An improved algorithm for neural network classification of imbalanced training sets
نویسندگان
چکیده
منابع مشابه
An improved algorithm for neural network classification of imbalanced training sets
The backpropagation algorithm converges very slowly for two-class problems in which most of the exemplars belong to one dominant class. An analysis shows that this occurs because the computed net error gradient vector is dominated by the bigger class so much that the net error for the exemplars in the smaller class increases significantly in the initial iteration. The subsequent rate of converg...
متن کاملAn Improved Algorithm for SVMs Classification of Imbalanced Data Sets
Support Vector Machines (SVMs) have strong theoretical foundations and excellent empirical success in many pattern recognition and data mining applications. However, when induced by imbalanced training sets, where the examples of the target class (minority) are outnumbered by the examples of the non-target class (majority), the performance of SVM classifier is not so successful. In medical diag...
متن کاملAn Improved Algorithm for Network Reliability Evaluation
Binary Decision Diagram (BDD) is a data structure proved to be compact in representation and efficient in manipulation of Boolean formulas. Using Binary decision diagram in network reliability analysis has already been investigated by some researchers. In this paper we show how an exact algorithm for network reliability can be improved and implemented efficiently by using CUDD - Colorado Univer...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 1993
ISSN: 1045-9227
DOI: 10.1109/72.286891